Factorization method for crystallographic Fourier transforms
نویسندگان
چکیده
منابع مشابه
The Fourier-series method for inverting transforms of probability distributions
This paper reviews the Fourier-series method for calculating cumulative distribution functions (cdf’s) and probability mass functions (pmf’s) by numerically inverting characteristic functions, Laplace transforms and generating functions. Some variants of the Fourier-series method are remarkably easy to use, requiring programs of less than fifty lines. The Fourier-series method can be interprete...
متن کاملSparse Generalized Fourier Transforms ∗
Block-diagonalization of sparse equivariant discretization matrices is studied. Such matrices typically arise when partial differential equations that evolve in symmetric geometries are discretized via the finite element method or via finite differences. By considering sparse equivariant matrices as equivariant graphs, we identify a condition for when block-diagonalization via a sparse variant ...
متن کاملQuadratic Fourier Transforms
In this paper we shall examine the quadratic Fourier transform which is introduced by the generalized quadratic function for one order parameter in the ordinary Fourier transform. This will be done by analyzing corresponding six subcases of the quadratic Fourier transform within a reproducing kernel Hilbert spaces framework. Center for R&D in Mathematics and Applications, Department of Mathemat...
متن کاملFast Fourier Transforms
29 O(b log(b)) operations (using standard multiplication). As there are O(b= log(b)) primes in total, the running time of this stage of the algorithm is O(b 2 L), even using the \grammar school" method of integer multiplication. At this stage of the algorithm we have obtained a vector of length L whose entries are integral linear combinations of powers of with coeecients bounded by M in absolut...
متن کاملDimensionless Fast Fourier Transforms
This paper shows that there are fast Fourier transform (FFT) algorithms that work, for a fixed number of points, independent of the dimension. Changing the dimension is achieved by relabeling the input and the output and changing the “twiddle factors.” An important consequence of this result, is that a program designed to compute the 1-dimensional Fourier transform can be easily modified to com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Applied Mathematics
سال: 1990
ISSN: 0196-8858
DOI: 10.1016/0196-8858(90)90014-p